What is the University of California Pavement Research Center?

- Mission
 - Dedicated to providing knowledge, the UCPRC uses innovative research and sound engineering principles to improve pavement structures, materials, and technologies.
- 3 to 5 year contracts with Caltrans since 1995
 - Basic research
 - Development of tools, specifications, tests
 - Support and evaluation of implementation
 - Bringing or developing the best technologies to California and making them work
- <u>www.ucprc.ucdavis.edu</u>

Some Recent UCPRC Work

- Caltrans (90% of our work)
 - · Performance related specifications for materials
 - Life Cycle Cost Analysis (LCCA)
 - Pavement structure design methods
 - Environmental Life Cycle Assessment (LCA)
 - Pavement management
 - Recycling (asphalt, concrete, rubber, at-plant, in-place)
 - Construction quality
 - Rapid Rehabilitation construction productivity/traffic
 - Noise, smoothness
- Caltrans and industry
 - Permeable pavements for storm water infiltration

Some Recent Work of UCPRC

- California Air Resources Board
 - Urban heat island life cycle assessment (with LBNL)
- CalRecycle
 - Rubber asphalt mix development and specifications
- Federal Highway Administration
 - Pavement LCA, resilience, sustainability training (consortium)
 - Full-depth reclamation
 - Wide base single truck tires
- Federal Aviation Administration
 - Asphalt recycling
 - Mechanistic-empirical design methods
 - Airfield environmental life cycle assessment
- National Center for Sustainable Transportation
 - Complete streets LCA framework considering equity and environment
 - Prioritization approach for local government climate action plans

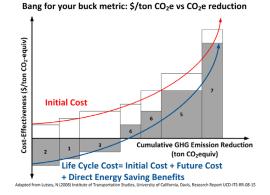
Transportation Infrastructure Resilience

- Extreme events (floods, fires, heat events)
 - Response to event
 - Prioritizing routes that should be hardened
 - Restoration of functionality
 - Protecting infrastructure while vulnerable
 - Trade-off of infrastructure damage cost vs economic inactivity cost
- Medium-term changes
 - Planning for future risks
 - Don't build there, abandonment
 - Don't build it if can't afford to maintain it
 - Design and specification changes
 - Consider pace of climate related change (extreme events, sea rise) vs rehabilitation and reconstruction of infrastructure
 - Communication with climate change and infrastructure practitioners: Infrastructure-Climate Network (ICNet) example for northeast

Transportation Infrastructure Reducing Greenhouse Gas Emissions

• Where are the impacts?

- Materials are 70 to 90% of GHG emissions from roads and bridges
 - Cement and asphalt "glue" that hold the rocks together is 50 to 80% of the materials emissions
- Construction and maintenance operations are 5 to 15%
- Materials transportation is the rest
- Biggest reductions can come from:
 - Making pavement last longer
 - Training, construction quality, good design
 - Keeping high traffic lanes smooth
 - Using less cement and asphalt over the long haul
 - Reducing transportation of materials
 - Mining existing hardscape for materials
- How much for pavement?
 - If do all currently known possible, on the order of 1.5 to 3 MMT reduction out of current 430 MMT state total; about 0.4 to 0.7%


Local Government

City and County Pavement Improvement Center

- Local government owns 80% of the state's public pavement
 - 35% counties; 45% cities
- CCPIC chartered in 2018
 - UCPRC, California State Association of Counties, League of California Cities, CSU (Chico, Long Beach, SLO), UC Berkeley
 - Currently funded by SB1 funds from UC Davis, UC Berkeley, Mineta Transportation Institute
 - <u>www.ucprc.ucdavis.edu/ccpic</u>
- Mission
 - · Delivering training and technology transfer
 - Pavement management and engineering certificate program
 - Developing guidance, specifications, and tools
 - · Creating and operating a resource center
 - Providing research and development support

Prioritization of Change Strategies for Resilience and Reduction of Environmental Impacts

- Cost and environmental impacts assessment and decision-making, need to consider
 - Full system (what changes due to interactions)
 - Full life cycle (initial change and what happens after)
 - Getting most benefit from available funding
- If not, high risk of negative unintended consequences
- Approach currently being piloted:
 - Caltrans internal operations
 - Local government Climate Action
 Plans

Ask me at a break how this works

Government and Industry Changes and Challenges Next 30 Years

- Training
 - Thousands of new people making decisions, poor retention of corporate knowledge in government
 - Lack of transportation infrastructure training
 Especially pavement
 - Planning and management of infrastructure
- · Resilience for extreme events and medium-term change
 - How can hardscape play a role in slowing, reducing stormwater flow?
 - Where and how to harden for response and to minimize economic losses
- Future of key materials
 - Reusing existing materials, using less new asphalt and cement
 - Will we have asphalt as we transition away from refining oil?
 - Hardscape for future mobility: electric vehicles, active transportation
 - New UCPRC initiative: synergies of using forest and ag biomass for transportation infrastructure, and potentially biomass energy
 - Current partners: Caltrans, Rice Research Board, USFS Endowment